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Lattice systems with compact state space

We discuss statistical physics systems on Z%, aiming to develop a quantitative
understanding of the effect of adding disorder to them.

We start with the case of a compact state space.
Setup: (1) Compact metric space S equipped with a Borel measure k.
(2) Translation-invariant finite range and finite energy Hamiltonian H.

As usual, for a finite domain A c Z%, at temperature T and with boundary
conditions 7: Z% — S, configurations o: Z% — S coinciding with T outside A are
sampled from the probability measure with density
1 1
Zrnn exp <— = Hp (0'))
with respect to the measure [],, dx(0,,), where Z7 5 ; is the partition function and

Hp contains the terms in the Hamiltonian depending on the spins in A.
Periodic boundary conditions and the zero-temperature limit are also allowed.

Examples: Ising model: § = {—1,1}, k = counting, H(6) = — Y.y, 0,0y
Potts model: § = {1,2, ..., q}, k = counting, H(0) = — Xy 145,=0,

Spin O(n) model withn > 2: S = §™* 1, k = uniform, H(o) = Y., |0y, — 0,|?




Phase transitions in pure systems |

Ising model: § = {—1,1}, k = counting, H(6) = — Y.y~ 030y

The Ising model undergoes a phase transition in dimensions d = 2 as the temperature
is lowered, from a disordered to an ordered state.

Similar behavior for the g-state Potts model (S = {1,2, ...,q}, H(0) = — Yyp 15,=5,)-

(a) =04 < 8. (b) B = 8.~ 0.4407

d=2 Potts model with g=4 at criticality.
Simulation by Beffara.

Simulation from

Spinka—Peled 2019

B=05> 8. ) 3 = 0.5 with Dobrushin boundary conditions




Phase transitions in pure systems |l

Spin O(n) model withn > 2: S = $*1, k = uniform, H(o) = Y., |0y, — 7, |?

Mermin—Wagner theorem: The spin O(n) model does not exhibit an ordered phase in
two dimensions (even at low temperature).

Frohlich-Simon—Spencer theorem: A low-temperature ordered phase exists in
dimensions d > 3.

In two dimensions:
n=2 (XY model): Berezinskii—Kosterlitz—Thouless transition (proof by Frohlich—Spencer)
from exponential to power-law decay of correlations as temperature is lowered.

n=3 (Heisenberg model): Polyakov conjecture — exponential decay at all temperatures.

(b) B=1.12

(b) B =10

Heisenberg model simulation
o eadlall @lllenfern Gy O Spinka—Peled 2019
Spinka—Peled 2019 A




Disordered lattice systems

Noised observables: Let f:SZd — R™, for some m = 1, be a bounded measurable
function depending on the spins in a finite neighborhood of the origin.

Disorder: Let (1,),cza be independent standard m-dimensional Gaussian vectors.
Disordered Hamiltonian: H"(a) = H(6) — A1), 1y -f(i];,(a))

where T, (o) is the configuration o translated by v.

Examples: Random-field Ising model: m = 1 and f (o) = ;. Thus

H1(0) = = ) 0,0,= 1) 1,0,
v

u~v
d

Edwards-Anderson spin glasses: S = {—1,1}, k = counting, f(o) = (aejao) -
H" (o) = _Az Nu,vyOu0y
u~v

Random-field g-state Potts model: m = q and f (o) = (100:1, b ). Thus
q

H"(o) = — Z 1au=av - Az nv,k10v=k
=1

u~v v k
Random-field spin 0(n) model, n > 2: m = n and f (o) = g, (with S~ c R"),

H"(o) = z loy — lez _Azrlv " Oy
v

u~v




Imry-Ma phenomenon

Imry-Ma (1975) considered the effects of disorder for the random-field Ising and
spin O(n) models, and predicted that in low dimensions, an arbitrarily small
disorder strength A causes the models to lose their ordered phase, as follows:
The random-field Ising model is disordered at all temperatures for d < 2.

The random-field spin O (n) model is disordered at all temperatures for d < 4.

Aizenman-Wehr (1989) proved the predictions as part of a general statement.

Notation: Write A, = {—L, ..., L}d. For each disorder n, write (-)ﬂ for the thermal
expectation according to a Gibbs measure u of the n-disordered system.
Write P and [E for the probability and expectation operator over 7.

Theorem (Aizenman-Wehr, special case): For a disordered lattice system with
compact state space (as discussed above) in dimensions d = 1, 2, at temperature
0 < T < oo and disorder strength A > 0, the limit

1
lim = " (F(7,()))
vEAf

exists and has the same value for all Gibbs measures u and almost all .
The same holds in dimensions 1 < d < 4 for the spin O(n) models withn > 2.

Our goal: Develop a quantitative understanding of this phenomenon.




Random-field Ising model

Random-field Ising model Hamiltonian: H"(6) = — Y., 04,0, — A ., N, 0y

The disordered model still satisfies the usual monotonicity (FKG) properties.

In particular, the model has maximal and minimal Gibbs measures u™* and u™~, arising
in the thermodynamic limit from constant boundary conditions. The Aizenman-Wehr
theorem implies that u* = u™~ in two dimensions n-almost surely, so that the model
has a unigue Gibbs measure.

A natural quantitative parameter is m; := IE((GO)XL) where (-)XL denotes the thermal
expectation in {—L, ..., L}* with +1 boundary conditions.

A bound of the form m; < exp(—c(4,T)L) is relatively simple for large disorder
strength A or high temperatures T, so interested in small A and low temperature.

Results: In dimensiond = 2: m; < \/% (Chatterjee 2017), m; < LCC(—('B (Aizenman-P.

2018) and finally

m; < C(A) exp (— ﬁ)

proved at zero temperature by Ding-Xia 2019 and then at positive temperature by Ding-
Xia 2019 and Aizenman-Harel-P. 2019.

2
Still open to determine correlation length £(A) for small A. Proof implies £(1) < et

_4
(Bar-Nir 2022). Ding-Wirth (2020): Correlation length = ¢®@ ) in another sense.



Random-field Ising and Potts models

Dimension d = 3, weak disorder (small 1): Imbrie 1985 (zero temperature) and
Bricmont-Kupiainen 1988 (all temperatures) established long-range order in the
random-field Ising model. A shorter argument was given recently by Ding-Zhuang
(2021), also extending the result to the random-field Potts model.

Ding-Liu-Xia (2022), making use of Ding-Song-Sun (2023), extend the long-range order
result to all temperatures lower than the critical temperature of non-disordered Ising
model. Ding-Huang-Xia (2023) investigate the critical scaling for the disorder at the
critical temperature of the non-disordered Ising model.

Rigas (2022) extended part of the correlation length result of Ding-Wirth to the
random-field Potts model.




Quantitative results

The other models discussed (Potts, spin-glasses, spin 0(n)) do not share the
monotonicity properties of the random-field Ising model and the proof techniques
break down for them. Indeed, even the choice of which quantity to bound is non-
obvious since it is unclear which boundary conditions T maximize or minimize the

average (f(i];,(a)))f\% and, indeed, it may be that these boundary conditions

depend on the disorder 1 and on L and v. We obtain the following results.

Theorem (Dario-Harel-P 2020+): For each two-dimensional disordered lattice
system of the type described above, at temperature 0 < T < oo and disorder
strength 4 > 0, there exists C > 0 so that forall L > 2,

1 C
IE( swp || > @@ - (@) )g

1
T1,T2:Z%>S vEA,% (log log L)Z

For the d-dimensional random-field spin O(n) model with n = 2, at temperature
0 < T < oo and disorder strength A > 0, there exists C > 0 so that forall L = 2,

( L
L3 d=2

1
sup Ldz«rv) <ci 5 4=3

T: 28-S 1
vEAL

| (oglogL) 2 d=4




Unigueness problem

Conjecture: For a disordered lattice system with compact state space (as discussed
above) in dimension d = 2, at temperature 0 < T < oo and disorder strength
A > 0, it holds that n-almost surely, for all vertices v € 772, the value of

(f (7))

is the same for all Gibbs measures u of the n-disordered system.

The conjecture is equivalent to the following finite-volume statement:

lim sup (f (0))21% —(f (a))jé =0, n—almost surely

L—ooo Tl,Tzlzz—)S

The value of 7;, (o) itself need not be unique in general systems.
For instance, a global sign flip applied to o in a spin glass system (with Hamiltonian
H"(0) = —A X~y Ny v0yu0y) takes one Gibbs measure to another.

Applied to two-dimensional spin glasses at zero temperature, the conjecture
implies the conjecture that the spin glass system has a unique ground-state pair.




Partial unigueness result

Due to the disorder in the systems considered, it does not make sense to consider
translation-invariant Gibbs measures. Instead, the following notion of translation-
covariant Gibbs measures has been proposed.

A measurable map p from the disorder variables 7 to the Gibbs measures of the 1-
disordered system is called a translation-covariant Gibbs measure if

p(T,m) = T,(p(m)

for all vertices v € Z2 (the translation T, naturally extends to Gibbs measures).

Compactness arguments (Aizenman-Wehr, Newman-Stein) show that translation-
covariant Gibbs measures always exist for the disordered systems considered
above (as barycenters of translation-covariant metastates).

Theorem: For a disordered lattice system with compact state space (as discussed
above) in dimension d = 2, at temperature 0 < T < oo and disorder strength
A > 0, it holds that n-almost surely, for all vertices v € 772, the value of

<f(71')(0-))>p(17)
is the same for all translation-covariant Gibbs measures p.

Corollary: For the two-dimensional spin glass model at zero temperature, if there
exists a translation-covariant extremal Gibbs measure then there is a unique
translation-covariant Gibbs measure up to a global sign flip.




Proof sketch for compact state space

Theorem recalled: For the above disordered systems with compact state space in
two dimensions, at0 < T < oo and A > 0, there exists C > 0 so that forall L = 2,

1 C
E( sp |15 D @@ - (@) )s

1
TS veEN? (loglog L)%

for the partition

To simplify, assume f(g) = f(gp) € Rand fix T > 0. Write ZTAT

function at temperature T, in a finite A € Z? and with boundary conditions 7. Thus

_1pgm
0, = j e | ax) | | 62,00

VEA VEAC
with HX (o) the terms in the Hamiltonian H77 (0) =H(o) — 1), nvf(iﬁ,(a))
depending on the spins in A. Let FX (1) = — N logZTAT be minus the free energy.

Standard facts: 1) F77 (1) is a convex function of 1.

Cloa|

2) For each A: sup|F"(Tl) F77 2)| R

11,72

. A~ A~ 1 A~
3) Write n = (7], nk) where )5 = 5 Ypealy and Nz = 1y — Aa. Then

0 =~ 1
F(T’AJTIA)(T) —

—F, Z(f(T (0)))4 , with the sum over terms involving spins in A
0 |Al

12




Proof sketch I

Lemma: Let A satisfy |0A| < C+/|A|. Then for each § > 0,

TTsuZ%_)S |A|Zf( O'A,L. ) f(ﬂ,(a]l’h» <26 2exp<

Proof sketch: Claim: Let g: R — IR be a convex 1-Lipschitz function. Set
N,.(g) = {h:R - R convex 1—Lipschitz | ||h — g|lec < T}

Then foreach r,§ > 0. N
Cr

Leb({x € R| 3h € Ny (), IN'(0) — g’ 2 ) <

72 _ - (xnp) ¢1A)
Fix 7g: Z= — S and let g(x) = F, (7o). Then forall 7, Fy "7 () € Ncjaai(g).
|A]
Thus, the Claim implies that
CA|0A| CA

(enR) X15) }) < <
6nA (@ - an gn "] 2 8 ) < AI62 = []A]s2

Leb({xE]R%|EIT:Z2 - S,

: A 1 : : : . 1
Since 1] == mzveA 1y, is Gaussian with standard deviation T we conclude that

(é‘i& A Zf (% (o)) = £ (5 (67z,))




Proof sketch Ill

Let L > 2. Callaset A" € A; e-fluctuative if

su Z( o, )— (Ta", )<€
T1,T2:Z%—>S |A| f AnTy f v(A'TZ)

cVA H

Perform a fractal percolation: Set § == ———and k = CA1/6.
(loglog L)4

Partition A} into k squares. Then partition each of these into k squares and so on

until reaching squares of constant size. A square in this recursive partition is taken

if it is 46-fluctuative and the squares containing it are not 446-fluctuative.
Define B :={v € AL | vis not in a taken square}. Then

sup Zf( ol )—f(T(a77 )) <45+C|BI
Tl,TZ:Zd—>S |AL| ALt Y ALt B |AL|

It remains to show that P(v € B) < §. Write Ag(v) D A;{(v) D A,(v) D - for the
partition squares containing v. Since |Ap, 1 (V)|< ¢é|A,(v)|/A, one concludes that

{v eB} c ﬂ{Af(v) \ Apy1(v) is not 26—fluctuative}

The events in the intersection are independent since the annuli are disjoint.



Non-compact case:
Random-field random surfaces

We now discuss the effect of disorder on systems with non-compact state space.
Our focus is on random surface models.

Let (7,),cza be independent standard Gaussian random variables.

A real-valued random-field random surface is the model on ¢: Z¢ — R with
Hamiltonian

H(@®) = ) Vb= $) =2 ) mushy

u~v 1%
where V: R — R is a measurable even function termed the potential.
The case V(x) = x? is the real-valued random-field Gaussian free field.

We also study the integer-valued random-field Gaussian free field which has the
same Hamiltonian as above with V (x) = x?2 but restricts to ¢: Z¢ — Z.

Our goal the localization/delocalization properties of these disordered surfaces.

Without disorder: the gradient of these surfaces localizes in all dimensions d > 1.
On A%, real-valued surfaces delocalize with variance L when d = 1 and with
variance log L when d = 2 while staying localized for d > 3.

The integer-valued GFF behaves similarly except for a roughening transition when
d = 2, from localized to logarithmic delocalization as the temperature increases. .




Random-field random surfaces: results

* Theorem (Dario-Harel-P 2020+): Consider the real-valued random-field random
surfaces above at all temperatures 0 < T < oo and all disorder strengths A > 0 on
A¢ with zero boundary conditions. Assume 0 < c_ < V"' < ¢, < . Then

L d=1
: : 1
— Discrete Gradient: E (<L—d Z{u,v}EE(Ag)(¢u — ¢v)2>> ~{loglL Z ;

1

L*% d=123
— Height fluctuations: IE((qu)Z) ~ {logL d=4
1 d=5

* Theorem (Dario-Harel-P 2020+): The integer-valued random-field Gaussian free
field, at all temperatures 0 < T < oo and disorder strengths A > 0, satisfies the
gradient estimate above, and, when d = 1,2, satisfies

Additionally, this expectation is bounded in L in dimensions d = 3 at low
temperatures and small disorder strength 4 > 0.




Random-field random surfaces:
previous results

Bovier-Kulske studied a random field Solid-On-Solid model in which the disorder
enters differently from the way it is introduced here. They proved a certain form of
delocalization in two dimensions (Bovier-Kilske 1996) and localization in three and
higher dimensions (Bovier-Kililske 1994).

Kulske and Orlandi 2006 prove that for all deterministic fields 1, a random surface
with field n will delocalize with at least logarithmic variance in two dimensions,
when the potential I satisfies sup IV (x) < oo.

Van Enter and Kulske 2008 proved a form of delocalization for the gradients of the
random-field random surface for a wide class of potentials in two dimensions. The
result is non-quantitative.

They further proved a lower bound on the rate of correlation decay for gradient
Gibbs measures, when they exist, in three dimensions.

Cotar and Kulske proved the existence of translation-covariant gradient Gibbs
measures for random-field random surfaces in dimensions d = 3 (Cotar and Kiilske
2012) and their uniqueness for each given expected tilt (Cotar and Kilske 2015),
for a large class of potentials.

Later results: Dario 2023 (thermodynamic limit), Sakagawa 2023 (maximum).



Open questions

For disordered systems with compact state space, improve the bounds on

1 T T,
g n,rszl:lzl?ies L_dv;d(f(% (0))>Ag U (0))>A1‘f

If the sum is performed over a concentric box of half the size, does it decay
exponentially fast with L in two dimensions atall T and A > 07

Uniqueness conjecture: For two-dimensional disordered systems, for each v € Z2,
n-almost surely, the value of (f(fl},(a)))u is the same for all Gibbs measures .

Is there a Berezinskii-Kosterlitz-Thouless type transition as the disorder strength
lowers (i.e., transition from exponential to power-law decay) for the random-field
spin O(n) models with n = 2 in dimensions d = 3 or d = 4? What about n > 37

What is the localization/delocalization behavior of the integer-valued random-field
Gaussian free field in dimensions d = 3 at high disorder strength A?

Conjecture: Delocalization in dimension d = 3 and localization when d = 5.

Thus we conjecture a roughening transition in the disorder strength for d = 3.
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